Bài viết dưới đây sẽ giới thiệu với các bạn công thức tính nhanh tỉ số thể tích khối đa diện gồm công thức tính tỉ số thể tích khối chóp tam giác, công thức tính nhanh tỉ số thể tích khối chóp có đáy là hình bình hành, hai khối chóp chung chiều cao, hai khối đa diện đồng dạng tỉ số k, mời các bạn tham khảo.
Công thức tính tỉ số thể tích khối chóp tam giác
Cho hình chóp S.ABC có 3 điểm A’. B’, C’ lần lượt nằm trên 3 cạnh SA, SB, SC. Khi đó, ta có công thức về tỷ số thể tích như sau:


Công thức trên vẫn đúng trong trường hợp A’ trùng với A. Khi đó:


Công thức tính tỉ số thể tích khối chóp có đáy là hình bình hành
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành. Trên các đoạn SA, SB, SC, SD lấy lần lượt các điểm A’, B’, C’, D’ khác S sao cho a+c=b+d. Trong đó:
Khi đó ta có tỉ số thể tích là:

Công thức tính tỉ số thể tích hai khối chóp chung chiều cao
Nếu hai khối chóp (H) và (H’) có diện tích hai đáy lần lượt là S và S’. Đồng thời có cùng chiều cao h. Thì ta có:

Công thức tính tỉ số thể tích hai khối đa diện đồng dạng tỉ số k
Hai khối đa diện (H) và (H’) được gọi là đồng dạng tỉ số k nếu có 1 phép đồng dạng F tỉ số k biến (H) thành (H’). Khi đó giả sử AB là 1 cạnh của (H) và F(AB)=A’B’ thì A’B’=kAB. Gọi V và V’ lần lượt là thể tích của (H) và (H’), khi đó ta có tỉ số thể tích sau:


Công thức tính nhanh tỉ số thể tích khối lăng trụ tam giác
Cho khối lăng trụ tam giác ABC.A’B’C’. Trên các cạnh bên AA’, BB’, CC’ lấy lần lượt các điểm M, N, P. Khi đó ta có tỉ số sau:
Công thức tính nhanh tỉ số thể tích khối lăng trụ đáy là hình bình hành (khối hộp)
Cho khối hộp ABCD.A’B’C’D’. Trên các cạnh bên AA’, BB’, CC’, DD’ lấy lần lượt các điểm M, N, P, Q sao cho M, N. P, Q đồng phẳng. Khi đó ta có tỉ số sau:
Hy vọng các bạn có thể vận dụng thành thạo công thức liên quan đến tỉ số thể tích khối đa diện mà Quantrimang.com đã tổng hợp ở trên.